Bioengineering strategies to generate artificial protein complexes.
نویسندگان
چکیده
For many applications, increasing synergy between distinct proteins through organization is important for the specificity, regulation, and overall reaction efficiency. Although there are many examples of protein complexes in nature, a generalized method to create these complexes remains elusive. Many conventional techniques such as random chemical conjugation, physical adsorption onto surfaces, and encapsulation within matrices are imprecise approaches and can lead to deactivation of protein native functionalities. More "bio-friendly" approaches such as genetically fused proteins and biological scaffolds often can result in low yields and low complex stability. Alternatively, site-specific protein conjugation or ligation can generate artificial protein complexes that preserve the native functionalities of protein domains and maintain stability through covalent bonds. In this review, we describe three distinct methods to synthesize artificial protein complexes (genetic incorPoration of unnatural amino acids to introduce bio-orthogonal azide and alkyne groups to proteins, split-intein based expressed protein ligation, and sortase mediated ligation) and highlight interesting applications for each technique.
منابع مشابه
The protein-nanoparticle interaction (protein corona) and its importance on the therapeutic application of nanoparticles
Nanobiotechnology has provided promising novel diagnostic and therapeutic strategies which capable to create a broad spectrum of nano-based imaging agents and medicines for human administrations. Several studies have demonstrated that the surface of nanomaterials is immediately coated with suspended proteins after contact with plasma or other biological fluids to form protein corona-nanoparticl...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملSupplemental information for: Single Molecule Localisation and Discrimination of DNA-Protein Complexes by Controlled Translocation Through Nanocapillaries
Roman D. Bulushev, ∗ Sanjin Marion, † Ekaterina Petrova, ∗ Sebastian J. Davis, ∗ Sebastian J. Maerkl, and Aleksandra Radenovic Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland Institute of Physics, Bijenička cesta 46, HR-10000 Zagreb, Croatia Laboratory of Biological Network Characterization, Institute of Bioengineering, Schoo...
متن کاملCytoplasmic dynein: tension generation on microtubules and the nucleus.
Cytoplasmic dynein is a microtubule dependent motor protein that is central to vesicle transport, cell division and organelle positioning. Recent studies suggest that dynein can generate significant pulling forces on intracellular structures as it motors along microtubules. In this review, we discuss how dynein-generated pulling forces position the nucleus and the centrosome.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biotechnology and bioengineering
دوره 112 8 شماره
صفحات -
تاریخ انتشار 2015